
Legacy Application 
Assessment



Assessing a legacy application involves evaluating various aspects to determine its current state, 
pain points, and issues in the area of performance, security, scalability, maintainability, and future 
viability. 

Assessment is executed via interviews and surveys with appointed Stakeholders to understand their 
perspective on the application’s performance, issues, and future needs, known pain points and de-
sired improvements.

Assessment Process:
 



Aspects included and considered in the assessment

1. Business Functionality

•	 Alignment with current Business Goals: Determine if the application still supports current 
business processes and objectives.

•	 User Requirements: Assess whether the application meets the needs of its users and if there 
are any gaps in functionality.

•	 Criticality: Evaluate how critical the application is to daily operations and its impact on the 
business if it fails.

2. Technical Architecture

•	 Technology Stack: Identify the technologies used (programming languages, frameworks, da-
tabases, tools, etc.) and assess their relevance and supportability.

•	 System Integration: Determine how well the application integrates with other systems and 
whether these integrations are stable and secure.

•	 Scalability: Assess the ability of the application to scale to meet future demands.

•	 Availability: Assess if application meets current operational demands and application’s uptime, 
reliability, and consistent accessibility to users when needed

•	 Performance: Collect currently available data and info about application’s performance, in-
cluding response times, throughput, and resource usage.

3. Code Quality and Maintainability

•	 Codebase State: Collect feedback on the current perceived level of codebase quality, includ-
ing availability and adherence to coding standards, modularity, and readability.

•	 Technical Debt: Identify areas of the code that may have accumulated technical debt, making 
the system harder to maintain and extend.

•	 Documentation: Assess the availability of documentation, including architecture diagrams, 
code comments, and user manuals.

•	 Dependency Management: Check the status of external libraries and dependencies, including 
whether they are up-to-date and still supported. Is this already checked and considered?

4. Security and Compliance

•	 Security Vulnerabilities: Collect info of any past security issues caused by exploited vulnera-
bilities.

•	 Backup Compliance: Assess if application’s data is protected, recoverable, and adheres to 
organizational and regulatory requirements.

•	 Compliance: Collect feedback on application’s compliance with relevant industry standards 
and regulations, such as GDPR, HIPAA, or PCI-DSS.

5. Infrastructure and Environment

•	 Hosting Environment: Analyze the current hosting environment, including servers, operating 
systems, and network infrastructure.

•	 CI/CD Environment Setup: Evaluate how environments (development, staging, production) are 
configured and managed.



6. User Experience (UX)

•	 Interface Design: Gather feedback on pain points and areas where the application may be 
failing to meet user expectations. Assess the user interface for usability, accessibility, and 
adherence to modern design standards.

7. Cost and Licensing

•	 Operational Costs: collect data for the current costs associated with running the application, 
including hardware, software, licensing, and support.

8. Future Viability and Modernization

•	 End-of-Life Components: Identify any components or technologies that are approaching or 
have reached end-of-life status, requiring replacement or upgrade.

•	 Modernization Potential: Evaluate the feasibility of modernizing the application, including 
re-platforming, refactoring, extending, rearchitecting.

Assessment Report

A final assessment report is generated, providing clear insights into:

•	 Application’s current state, 

•	 Recommendations and Action Plan

o Short-Term Fixes: Identified quick wins or urgent improvements that can stabilize or 
improve the application in the short term.

o Long-Term Strategy: Recommendations for the long-term management of the applica-
tion, whether that involves re-platforming, refactoring, extending, or rearchitecting.

o Cost-Benefit Analysis on the TCO for licensing and infrastructure level: A cost-bene-
fit analysis for any proposed actions, helping stakeholders make informed decisions.

•	 If applicable, a proposed high-level architecture of the modernized application

•	 Recommended tools addressing identified pain points:

o Code Analysis Tools: To Review the codebase for quality, including adherence to cod-
ing standards, modularity, and readability

o Performance Testing Tools : To Measure the application’s performance, including re-
sponse times, throughput, and resource usage

o Security Scanning Tools: To identify potential security vulnerabilities during develop-
ment and runtime

•	 A planned roadmap for the implementations of recommended improvements



info@comtrade360.com
+1 617-546-7400
comtrade360.com


